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The previously developed model describing quantum correction of carriers’ concentration spatial distribution in ultra small 
MOS/MOD devices has been applied to Surrounding-Gate Cylindrical MOSFETs. The inevitable role of quantum effects 
over almost the entire sample has been confirmed and supported by numerical calculations for a specific set of geometrical 
parameters. 
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1. Introduction 
 
The evolution of modern device physics has led to the 

realization of devices with different promising geometries. 
Among them, the cylindrical geometry is most frequently 
used in order to achieve device size reduction and better 
packaging without the appearance of short-channel effects 
[1, 2]. Surrounding-gate devices are the best candidate 
because of their unbroken explicit cylindrical symmetry. 
They can appear as Si MOSFETs, as well as thin-film 
transistors (TFT) produced by means of organic 
semiconductors [3]. If first ones are considered, the 
inevitable step is to determine the spatial distribution of 
carriers over the whole semiconducting structure. So far 
the usual procedure was to solve the Poisson’s equation 
for an undoped sample assuming that the carriers obeyed 
Boltzmann statistics. On the other hand, the sample size is 
usually even smaller than a thermal de Broglie wavelength 
λD (at room temperature approximately 15nm in silicon) 
making quantum-mechanical effects become prominent 
[1]. It might be possible to try to evaluate concentration of 
carriers by means of wave function obtained as a solution 
of 1D (one-dimensional) radial Schrodinger equation, 
assuming that they are subject to equilibrium Fermi-Dirac 
distribution. Apart from the shortcomings described in 
previous papers [4], this procedure would cause more 
serious problems than in the case of flat geometry (due to 
the more complex character of wave function) and could 
hardly lead to a cylindrical symmetry of concentration of 
carriers as expected.  

 
 
 
 

Therefore we will directly solve the transport equation 
described in our previous papers, this time introducing 
cylindrical symmetry by hand [4, 5]. This equation 
contains quantum correction term and is especially 
convenient near strong barriers, where the curvature of 
n(r) becomes significant [1]. 

 
 
2. Device structure 
 
Let us consider the structure shown in Fig. 1. In the 

absence of lateral transport (voltage VDS=0) the 
concentration of carriers can be described by a set of 
following equations [1]: 
 

( ) ( ) 0t grad n grad V qΦ − + =                 (1a) 
 

( ) ( )
2 1

2 rq r n
me n

= Δ r
hr                         (1b) 

 
where Φt=kT/e, V is the electrostatic potential, q is the 
quantum correction term, n is the concentration. 

First of them is the transport equation in equilibrium 
and leads to a straight-forward Boltzmann-like solution: 
 

( ) 0 exp
t

V qn r n
⎛ ⎞+

= ⋅ ⎜ ⎟Φ⎝ ⎠

r                                 (2) 

 
with quantum-correction term defined by means of 
relation (1b) and n0 being an arbitrary parameter imposed 
by boundary conditions. 
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Fig. 1. Cross-sectional view of the cylindrical SG MOSFET. 

 
 

If the channel length L is much greater than the radius 
of the sample, all the equations become 1D, depending 
only on radial coordinate r: 
 

( ) 0 exp
t

V qn r n
⎛ ⎞+

= ⋅ ⎜ ⎟Φ⎝ ⎠
               (3a)  
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2
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      (3b) 

 
Eliminating q(r) from the above set of relations, one 

derives a new equation that describes the variation of 
carrier’s concentration in the presence of the applied 
external voltage V(r): 
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22

2 2
0

1 1 4 ln 0
2 t

d n dn dn me nV r n
dr n dr r dr n

⎛ ⎞⎛ ⎞− ⋅ + ⋅ + ⋅ −Φ ⋅ ⋅ =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠h

 (4) 
 

This voltage is certainly subject to Poisson’s equation, 
but at the moment our goal is rather to investigate the 
consequences of equation (4) than to construct a closed 
self-consistent procedure. At first it must be observed that 
the equation (4) can be rewritten in a dimensionless form: 
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where: ( ) ( )0n r n n r= ⋅ (  is valid.  
 
Equation (5) turns out to be very important due to its 
universal character and therefore deserves to be 
investigated in details, while the influence of particular 
sample features is accounted for by taking different values 

of n0. The choice 0
2exp F

A
t

n N
⎛ ⎞− Φ

= ⋅ ⎜ ⎟Φ⎝ ⎠
 describes p-

doped sample, while 0 exp F
i

t

n n
⎛ ⎞−Φ

= ⋅ ⎜ ⎟Φ⎝ ⎠
 is valid for 

an undoped semiconductor, etc. Both cases assume that 
near the axis of the sample bulk is formed, in spite of the 
fact that small size of the sample (a∼5nm-10nm) implies 
this statement to be contemplated much more carefully [4]. 
 

The universal character of equation (5) provides the 
possibility of imposing universal boundary conditions: 
 
 ( ) 0n a =(

                                    (6a)    

 ( )0 1n =(
                                     (6b)  

 
First of them is a consequence of quantum-mechanical 

requirement that the carriers are not able to leave 
semiconductor substrate and penetrate into oxide, while 
the second one is enabled by the arbitrarity of parameter n0 
[4]. 
Although equation (5) does not seem difficult for 
numerical solving at first sight, its nonlinear term can 
cause some problems. Fortunately, there exists a 
straightforward procedure to linearize it. If a new quantity 
z(r) according to: 
 

 ( ) ( )n r z r=(
                         (7) 

 
is introduced, equation (5) appears in a much more 
convenient form: 
 

 ( )2

2 2

41 ln 0
2

t

t

V rmed z dz z z
dr r dr

⎛ ⎞Φ
+ ⋅ + ⋅ − ⋅ =⎜ ⎟Φ⎝ ⎠h

   (8a) 

 
together with derived boundary conditions: 
 
 ( ) 0z a =                                     (8b)    

 ( )0 1z =                                       (8c)  
 

Similar to the flat geometry case, it is very useful to 
introduce a new parameter with the dimension of length 
[4]: 
 

 
2

2

8 tme
λ =

Φ
h

,   i.e.   
8 tme

λ =
Φ

h
               (9) 

 
With the effective mass considered, at the room 

temperatures the estimated value for silicon becomes 
λ≈1.4nm. This length plays a significant role in 
investigating how deep quantum effects penetrate into the 
sample. Being comparable with the radius of the sample in 
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the order of magnitude, it gives a reliable hint that 
quantum effects become really prominent in the sense they 
can affect the device operation. Finally, the equation to be 
treated numerically becomes: 
 

 
( )2

2 2

1 1 ln 0
2 2 t

V rd z dz z z
dr r dr λ

⎛ ⎞
+ ⋅ + ⋅ − ⋅ =⎜ ⎟Φ⎝ ⎠

      (10)  

 
with boundary conditions mentioned above (8b, 8c). This 
equation is going to be solved in two different cases of 
special importance. The first one will investigate carriers’ 
spatial distribution in the absence of external field (V(r)=0, 
∀r∈Dr), while the second one will exploit the following 
form of the applied voltage (Fig. 2): 
 

 ( ) 0
rV r V
a

α
⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

                            (11) 

 
This step is supposed to be sufficient due to the 

limited range with respect to radial coordinate r and the 
dimensionless parameter α being greater than one in order 
to achieve the expected convexity. 

 
 
3. Numerical procedure 
 
The first problem one had to face with was the 

existence of boundary conditions specified at two different 
points (6, 8b, 8c). This fact has prevented the 
straightforward use of previously developed Runge-Kutta 
method and made one to search for alternative ones [6]. As 
the best candidate a “shooting” method has emerged. The 
essence of this procedure is to start with the presumed 
boundary conditions at one side of the sample [6]: 
 

( ) 0z a =                                  (12a)    

( )dz a
dr

θ=                                (12b)  

 
where θ is the free parameter finding itself in the range (0; 
+∞).  

The suggested procedure was to solve equation (10) 
together with boundary conditions (12a, 12b) varying the 
parameter θ over the whole range until the solution 
satisfying both boundary conditions (8b, 8c) emerged. 
Only then we were able to go throw Runge-Kutta steps 
suggested in the literature [6]. To achieve this goal, it is 
convenient to renormalize the radial coordinate r in the 
following manner: 
 

 ln ay
r

= ,   0 r a≤ ≤ ,   0 y≤ ≤ +∞         (13) 

 
giving equation (10) even simpler form: 
 

 ( ) ( )2 2

2 2 exp 2 ln 0
2 2 t

V yd z a y z z
dy λ

⎛ ⎞
+ ⋅ − ⋅ − ⋅ =⎜ ⎟Φ⎝ ⎠
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( ) ( )0 expV y V yα= ⋅ − ⋅ , ( )0 0z = ,   ( )lim 1

y
z y

→+∞
=  (15) 

 
The solution z(y) of equation (14) is shown in Figs. 2 

and 3 and deserves some general remarks: 
a) due to the exponential term exp(-2y) the solution 

z(y) strongly tends to its asymptotic (constant) value even 
for moderate values of the unknown y; 

b) if V(y)=0 the solution z(y) is convex upwards over 
the entire domain Dy: (0; +∞) as expected (Fig. 2), but 
introducing V(y) according to (15) will change this 
conclusion (Fig. 3). The concentration of carriers has a 
sharp peak near the oxide/semiconductor interface 
surpassing the asymptotic value, as also expected. It is 
usually said that the carriers are attracted by the potential 
V(y) and thus removed from the core of the sample to its 
border. At the very end, it is interesting to go back to 
initial quantities, i.e. to go through all transformations in 
the reverse direction; the result ( )n r(

 is shown in Fig. 4. 
with the mostly expected behavior. 

 
Fig. 2a. The results of calculation according to equation 

(14) z(y), V0=0, a=5nm 
 

 
 

Fig. 2b. The results of calculation according to equation 
(14) z(y), V0=0, a=2.5nm 
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Fig. 3. The results of calculation according to equation 
(14) z(y), V0=1.2V, α=3, a=5nm 

 

 
 

Fig. 4. The calculated profile of carriers’ spatial 
distribution in SG MOSFET. 

 
 
 

In addition to equation (14), it is useful to assume that 
the potential V(y) is subject to Poisson’s equation. This set 
of conjugated equations must be solved exploiting 
selfconsistent procedure, but its foundation in this case is 
far beyond the goal of this paper. 

 
 
 
 
 
 
 
 
 
 
 

5. Conclusion 
 
A method for introducing quantum effects on the 

carriers’ concentration profile and their transport 
properties, previously developed bringing together the 
achievements of quantum mechanics and statistical 
physics, has been applied to devices with recently 
designed and promising cylindrical geometry. The 1D 
equation describing this concentration profile for rather 
long-channel devices has been derived, transformed and 
numerically solved in two cases of the greatest interest 
(V(y)=0 and V(y)≠0 as postulated). The invariance of the 
obtained equation under multiplication of n(r) by an 
arbitrary quantity n0 provides it some kind of universal 
character. That means it can be solved for any constant 
value n0 (for example n0=1) and only then the actual 
boundary conditions for r=0 are implemented. 

The role of quantum effects is unquestionable. The 
lateral dimension of the sample implies that quantum 
effects (here appearing as edge effects) penetrate deep into 
semiconductor sample and spread over the prevailing part 
of it. Therefore, it can be reasonably assumed that these 
quantum effects have a great influence on a device 
operation. 
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